题目内容
【题目】如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪得行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.
【答案】4600
【解析】解:小敏走的路程为AB+AG+GE=1500+(AG+GE)=3100,
则AG+GE=1600m,
小聪走的路程为BA+AD+DE+EF=3000+(DE+EF).
连接CG,
在正方形ABCD中,∠ADG=∠CDG=45°,AD=CD,
在△ADG和△CDG中,
所以△ADG△CDG,
所以AG=CG.
又因为GE⊥CD,GF⊥BC,∠BCD=90°,
所以四边形GECF是矩形,
所以CG=EF.
又因为∠CDG=45°,
所以DE=GE,
所以小聪走的路程为BA+AD+DE+EF=3000+(GE+AG)=3000+1600=4600(m).
所以答案是4600.
【考点精析】关于本题考查的正方形的性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形才能得出正确答案.
练习册系列答案
相关题目