题目内容
【题目】若y=x+2﹣b是正比例函数,则b的值是( )
A. 0 B. ﹣2 C. 2 D. ﹣0.5
【答案】C
【解析】因为y=x+2﹣b是正比例函数,所以2-b=0,所以b=2,故选C.
【题目】在同一平面直角坐标系中有6个点:
A(1,1),B(﹣3,﹣1),C(﹣3,1),D(﹣2,﹣2),E(﹣2,﹣3),F(0,﹣4).
(1)画出△ABC的外接圆⊙P,则点D与⊙P的位置关系 ;
(2)△ABC的外接圆的半径= ,△ABC的内切圆的半径= .
(3)若将直线EF沿y轴向上平移,当它经过点D时,设此时的直线为l1.判断直线l1与⊙P的位置关系,并说明理由.
【题目】寨卡病毒是一种通过蚊虫进行传播的虫媒病毒,其直径约为0.0000021cm.将数据0.0000021用科学记数法表示为( )A.2.1×10﹣7B.2.1×107C.2.1×10﹣6D.2.1×106
【题目】已知:如图,AE∥BF,∠E=∠F,DE=CF,
(1)求证:AC=BD;
(2)请你探索线段DE与CF的位置关系,并证明你的结论.
【题目】已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是
A. 含30°角的直角三角形 B. 顶角是30的等腰三角形
C. 等边三角形 D. 等腰直角三角形
【题目】下列事件中属于不可能事件的是( )
A. 某投篮高手投篮一次就进球
B. 打开电视机,正在播放世界杯足球比赛
C. 掷一枚骰子,向上的一面出现的点数不大于6
D. 在标准大气压下,90 ℃的水会沸腾
【题目】如图,在平面直角坐标系中,矩形OABC的顶点O为坐标原点,顶点A、C的坐标分别为(0,﹣)、(2,0),将矩形OABC绕点O顺时针旋转45°得到矩形OA′B′C′,边A′B′与y轴交于点D,经过坐标原点的抛物线y=ax2+bx同时经过点A′、C′.
(1)求抛物线所对应的函数表达式;
(2)写出点B′的坐标;
(3)点P是边OC′上一点,过点P作PQ⊥OC′,交抛物线位于y轴右侧部分于点Q,连接OQ、DQ,设△ODQ的面积为S,当直线PQ将矩形OA′B′C′的面积分为1:3的两部分时,求S的值;
(4)保持矩形OA′B′C′不动,将矩形OABC沿射线CO方向以每秒1个单位长度的速度平移,设平移时间为t秒(t>0).当矩形OABC与矩形OA′B′C′重叠部分图形为轴对称多边形时,直接写出t的取值范围.
【题目】今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,某校学生会为了调查学生对雾霾天气知识的了解程度,随机抽取了该校的n名学生做了一次跟踪调查,将调查结果分为四个等级:(A)非常了解.(B)比较了解.(C)基本了解.(D)不了解,并将调查结果绘制成如下两幅不完整统计图.
根据统计图提供的信息,解答下列问题:
(1)求n的值;
(2)在调查的n名学生中,对雾霾天气知识不了解的学生有 人,并将条形统计图补充完整.
(3)估计该校1500名学生中,对雾霾天气知识比较了解的学生人数.
【题目】甲、乙两组数据,它们都是由n个数据组成,甲组数据的方差是0.4,乙组数据的方差是0.2,那么下列关于甲乙两组数据波动说法正确的是( ).
A. 甲的波动小 B. 乙的波动小 C. 甲、乙的波动相同 D. 甲、乙的波动的大小无法比较