题目内容
【题目】某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.
(1)求∠CAE的度数;
(2)求AE的长(结果保留根号);
(3)求建筑物AO的高度(精确到个位,参考数据:,).
【答案】(1)45°;(2);(3)29.
【解析】
(1)先根据测得顶点A的仰角为75°,求出∠AEC的度数进而求∠CAE的度数;
(2)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;
(3)根据题干条件直接解直角三角形即可得到结论.
解:(1)由测得顶点A的仰角为75°,可知∠AEC=180°-75°=105°,又顶点A的仰角为30°即∠ACE=30°,所以∠CAE=180°-105°-30°=45°;
(2)延长CE交AO于点G,过点E作EF⊥AC垂足为F.
由题意可知:∠ACG=30°,∠AEG=75°,CE=40,
∴∠EAC=∠AEG-∠ACG=45°,
∵EF=CE×Sin∠FCE=20,
∴AE=,
∴AE的长度为m;;
(3)∵CF=CE×cos∠FCE=,AF=EF=20,
∴AC=CF+AF=+20,
∴AG=AC×Sin∠ACG=,
∴AO=AG+GO=+1.5=≈29,
∴高度AO约为29m.
练习册系列答案
相关题目