题目内容
【题目】我们已经知道,形如的无理数的化简要借助平方差公式:
例如:。
下面我们来看看完全平方公式在无理数化简中的作用。
问题提出:该如何化简?
建立模型:形如的化简,只要我们找到两个数,使,这样,,那么便有:,
问题解决:化简,
解:首先把化为,这里,,由于4+3=7,,
即(,,
∴
模型应用1:
利用上述解决问题的方法化简下列各式:
(1);(2);
模型应用2:
(3)在中,,,,那么边的长为多少?(结果化成最简)。
【答案】(1);(2);(3)
【解析】
(1)按照题目做法,令,即可求出结果;
(2)先将化为,再按照(1)的做法计算即可.
(3)利用勾股定理算出BC再化简即可.
(1)这里,由于,
即,
所以;
(2)首先把化为,这里,,由于,,
即,,
所以
(3)在中,由勾股定理得,
所以,
所以,
练习册系列答案
相关题目
【题目】A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
(1)根据题意,填写下表:
时间x(h) 与A地的距离 | 0.5 | 1.8 | _____ |
甲与A地的距离(km) | 5 |
| 20 |
乙与A地的距离(km) | 0 | 12 |
|
(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.