题目内容
【题目】如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是( )
A.3cm
B.4cm
C.5cm
D.6cm
【答案】A
【解析】解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm, 而EC= BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2 , 即(8﹣x)2=16+x2 ,
整理得16x=48,所以x=3.
故选A.
【考点精析】利用勾股定理的概念和翻折变换(折叠问题)对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
练习册系列答案
相关题目