题目内容
【题目】(1)如图①,在矩形ABCD中,在BC边上是否存在点P,使∠APD=90°,若存在请用直尺和圆规作出点P(保留作图痕迹)
(2)若AB=4,AD=10,求出图①中BP的长.
(3)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为AB,AC的中点,当AD=6时,BC边上是否存在一点Q,使∠EQF=90°,求此时BQ的长.
【答案】(1)作图见解析;(2)BP的长是2或8;(3).
【解析】
(1)以AD为直径画圆与BC交于点P1、P2,则点P1、P2为所求点;
(2)由矩形的性质得到AD=BC=10,AB=CD=4根据三角形相似即可解出;
(3)由三角形的中位线得到EF∥BC,EF=BC=6,根据EF与BC间距离为3,推出以EF为直径的⊙O与BC相切,得出BC上符合条件的点Q只有一个,记⊙O与BC相切于点Q,连接OQ,过点E作EG⊥BC,垂足为G,证出四边形EOQG为正方形,由勾股定理即可求出.
解:(1)如图所示,则点P1、P2为所求点;
(2)在矩形ABCD中,AD=BC=10,AB=CD=4,
设BP=x,则PC=10﹣x,
∵∠APD=90°,
∴∠APB+∠CPD=90°,
∵∠BAP+∠APB=90°,
∴∠BAP=∠CPD,
又∵∠B=∠C=90°,
∴△ABP∽△PCD,
∴,
∴,
解得:x1=2,x2=8,
∴BP的长是2或8;
(3)如图:
∵EF分别为AB、AC的中点,
∴EF∥BC,EF=BC=6,
∵AD=6,AD⊥BC,
∴EF与BC间距离为3,
∴以EF为直径的⊙O与BC相切,
∴BC上符合条件的点Q只有一个,记⊙O与BC相切于点Q,
连接OQ,过点E作EG⊥BC,垂足为G,
∴EG=OE=3,
∴四边形EOQG为正方形,
在Rt△EBG中,∠B=60°,EG=3,∴,∴.
【题目】为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量 | 平均数(次) | 中位数(次) | 众数(次) | 方差 | … |
该班级男生 | … |
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.