题目内容
【题目】如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为和,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形.
①若菱形的一个内角为,则该菱形的“接近度”等于 ;
②当菱形的“接近度”等于 时,菱形是正方形.
(2)设矩形相邻两条边长分别是和(),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.
【答案】(1)①∵内角为70°,
∴与它相邻内角的度数为110°.
∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.2分
②当菱形的“接近度”等于0时,菱形是正方形.4分
(2)不合理.
例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.
合理定义方法不唯一.
如定义为,
越小,矩形越接近于正方形;
越大,矩形与正方形的形状差异越大;
当时,矩形就变成了正方形.6分
【解析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;
(2)不合理,举例进行说明.
练习册系列答案
相关题目