题目内容
【题目】如图,点A、B在直线l上,AB=10cm,⊙B的半径为1cm,点C在直线l上,过点C作直线CD且∠DCB=30°,直线CD从A点出发以每秒4cm的速度自左向右平行运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当直线CD出发多少秒直线CD恰好与⊙B相切.
【答案】或6.
【解析】
根据直线与圆相切和勾股定理,圆的半径与BC的关系,注意有2种情况解答即可.
当直线与圆相切时,点C在圆的左侧,
∵∠DCB=30°,直线CD与⊙B相切,
∴2DB=BC,
即2(1+t)=10-4t,
解得:t=,
当直线与圆相切时,点C在圆的右侧,
∵∠DCB=30°,直线CD与⊙B相切,
∴2DB=BC,
即2(1+t)=4t-10,
解得:t=6,
故答案为:或6.
练习册系列答案
相关题目
【题目】某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了“我最想选的一门课”调查,并将调查结果绘制成如图统计图表(不完整)
选修课 | A | B | C | D | E | F |
人数 | 20 | 30 |
根据图标提供的信息,下列结论错误的是( )
A. 这次被调查的学生人数为200人 B. 扇形统计图中E部分扇形的圆心角为72°
C. 被调查的学生中最想选F的人数为35人 D. 被调查的学生中最想选D的有55人