题目内容

【题目】1)如图①,直线ABCDEABAD之间的一点,连接BECE,可以发现∠B+C=BEC

证明过程如下:

证明:过点EEFAB

ABDCEFAB(辅助线的作法),

EFDC

∴∠C=CEF

EFAB∴∠B=BEF

∴∠B+C=CEF+BEF

即∠B+C=BEC

2)如果点E运动到图②所示的位置,其他条件不变,∠BCBEC又有什么关系?并证明你的结论;

3)如图③ABDCC=120°AEC=80°,则∠A=      .(写出结论,不用写计算过程)。

【答案】(2)∠B+∠C=360°﹣∠BEC;证明见解析;(3)20°.

【解析】(1)(2)(3)分别过E作EF∥AB,根据平行线的判定得出AB∥CD∥EF,根据平行线的性质得出即可.

(2)证明:如图②,过点E作EF∥AB,

∵AB∥DC(已知),EF∥AB(辅助线的作法),

∴EF∥DC(平行于同一直线的两直线平行),

∴∠C+∠CEF=180°,∠B+∠BEF=180°,

∴∠B+∠C+∠AEC=360°,

∴∠B+∠C=360°﹣∠BEC;

(3)解:如图③,过点E作EF∥AB,

∵AB∥DC(已知),EF∥AB(辅助线的作法),

∴EF∥DC(平行于同一直线的两直线平行),

∴∠C+∠CEF=180°,∠A=∠BEF,

∵∠C=120°,∠AEC=80°,

∴∠CEF=180°﹣120°=60°,

∴∠BEF=80°﹣60°=20°,

∴∠A=∠BEF=20°.

故答案为:20°.

“点睛”本题考查了平行线的性质和判定的应用,能正确作出辅助线是解题的关键,注意:(1)两直线平行,内错角相等;(2)两直线平行,同位角相等;(3)两直线平行,同旁内角互补,以及平行于同一直线的两直线平行的运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网