题目内容
【题目】如图,正方形内有两点、满足,,,,则正方形的边长为( )
A.B.C.20D.
【答案】B
【解析】
连接AC,交EF于点M,可证明△AEM∽△CMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB.
解:连接AC,交EF于点M,
∵AE丄EF,EF丄FC,
∴∠E=∠F=90°,
∵∠AME=∠CMF,
∴△AEM∽△CFM,
∴,
∵AE=4,EF=FC=12,
∴
∴EM=3,FM=9,
在Rt△AEM中,AM2=AE2+EM2=16+9=25,解得AM=5,
在Rt△FCM中,CM2=CF2+FM2=144+81=225,解得CM=15,
∴AC=AM+CM=5+15=20,
在Rt△ABC中,AB=BC,
AB2+BC2=AC2=400
AB2=200
∴AB=10,即正方形的边长为10.
故选B.
练习册系列答案
相关题目
【题目】商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p= ,且其日销售量y(kg)与时间t(天)的关系如表:
时间t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日销售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?
(2)问哪一天的销售利润最大?最大日销售利润为多少?