题目内容
【题目】如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.
(1)a= , b= , c=;
(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;
(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= , AC= , BC= . (用含t的代数式表示)
(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
【答案】
(1)﹣2;1;7
(2)4
(3)3t+3;5t+9;2t+6
(4)解:不变.
3BC﹣2AB=3(2t+6)﹣2(3t+3)=12
【解析】解:(1)∵|a+2|+(c﹣7)2=0,
∴a+2=0,c﹣7=0,
解得a=﹣2,c=7,
∵b是最小的正整数,
∴b=1;
故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,
对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;
故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;
故答案为:3t+3,5t+9,2t+6.
(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.
练习册系列答案
相关题目