题目内容

【题目】如图,已知∠AOB=120°,OC⊥OB,按下列要求利用量角器过点O作出射线OD、OE;

(1)在图①中作出射线OD满足∠COD=50°,并直接写出∠AOD的度数是

(2)在图②中作出射线OD、OE,使得OD平分∠AOC,OE平分∠BOD,并求∠COE的度数;

(3)如图③,若射线OD从OA出发以每秒10°的速度绕点O顺时针方向旋转,同时射线OE从OC出发以每秒5°的速度绕点O顺时针方向旋转,设旋转的时间为t秒,在旋转过程中,当OB第一次恰好平分∠DOE时,求出t的值,并作出此时OD、OE的大概位置.

【答案】⑴ 20°或80°;⑵ 37.5°; ⑶ t=14

【解析】

试题要注意OD的位置有两处一是在∠AOB内部,一是在∠AOB外部,因此∠AOD的度数有两种结果;

(2)按要求作图,并根据平分线的性质求解即可;

(3)根据题意列方程求解即可.

试题解析:(1)有两种情况分别是:

①当OD在∠AOB内部时,如图,

COBO

∴∠COB=90°

∵∠AOB=120°

∴∠AOC=120°-90°=30°

∵∠COD=50°,

∴∠AOD=50°+30°=80°;

.②当OD在∠AOB外部时,如图,

COBO

∴∠COB=90°

∵∠AOB=120°

∴∠AOC=120°-90°=30°

∵∠COD=50°,

∴∠AOD=50°-30°=20°

(2)如图,

COBO

∴∠COB=90°

∵∠AOB=120°

∴∠AOC=120°-90°=30°

OD平分∠AOC

∴∠COD=AOC=15°

∴∠BOD=90°+15°=105°,

OE是∠BOD的平分线

∴∠EOD=BOD=52.5°

∴∠COE=52.5°-15°=37.5°.

(3)如图,

根据题意有:

30°+5t+(90°-5t)×2=10t

解得:t=14.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网