题目内容
【题目】如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:
(1)求抛物线的解析式.
(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.
【答案】 ;.
【解析】
(1)先把点代入,即,再根据对称轴方程求出,则可计算出,于是得到抛物线的解析式是;
(2)根据抛物线的对称性得到点C的横坐标为-7,则可利用(1)中的解析式计算出对应的函数值,即C点坐标为(-7,12),然后根据三角形面积公式求解.
把点代入得:
,
,
∵对称轴是,
∴,
∴,
∴,
∴抛物线的解析式是;
∵轴,
∴点与点关于对称,
∵点在对称轴左侧,且,
∴点的横坐标为,
∴点的纵坐标为,
∵点的坐标为,
∴中边上的高为,
∴的面积.
练习册系列答案
相关题目
【题目】二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A. 3 B. 2 C. 1 D. 0