题目内容
【题目】在直角坐标系中,点M,N在同一个正比例函数图象上的是( )
A.M(2,﹣3),N(﹣4,6)B.M(﹣2,3),N(4,6)
C.M(﹣2,﹣3),N(4,﹣6)D.M(2,3),N(﹣4,6)
【答案】A
【解析】
设正比例函数的解析式为y=kx,根据4个选项中得点M的坐标求出k的值,再代入N点的坐标去验证点N是否在正比例函数图象上,由此即可得出结论.
解:设正比例函数的解析式为y=kx,
A、﹣3=2k,解得:k=,﹣4×()=6,6=6,∴点N在正比例函数y=x的图象上;
B、3=﹣2k,解得:k=,4×()=﹣6,﹣6≠6,∴点N不在正比例函数y=x的图象上;
C、﹣3=﹣2k,解得:k=,4×=6,6≠﹣6,∴点N不在正比例函数y=x的图象上;
D、3=2k,解得:k=,﹣4×=﹣6,﹣6≠6,∴点N不在正比例函数y=x的图象上.
故选A.
“点睛”本题考查了一次函数图象上点的坐标以及待定系数法求函数解析式,解题的关键是
验证4个选项中点M、N是否在同一个正比例函数图象上. 本题属于基础题,难度不大,解决该题型题目时,根据给定的一点的坐标利用待定系数法求出正比例函数解析式,再代入另一点坐标去验证该点是否在该正比例函数图象上.
练习册系列答案
相关题目
【题目】问题:探究函数y=x+ 的图象和性质.
小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:
(1)函数的自变量x的取值范围是:____;
(2)如表是y与x的几组对应值,请将表格补充完整:
x | … | ﹣3 | ﹣2 | ﹣ | ﹣1 | 1 | 2 | 3 | … | |||
y | … | ﹣3 | ﹣3 |
| ﹣3 | ﹣4 | 4 | 3 | … |
(3)如图,在平面直角坐标系中描点并画出此函数的图象;
(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).