题目内容
【题目】二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣1 | ﹣ | ﹣2 | ﹣ | … |
根据表格中的信息,完成下列各题
(1)当x=3时,y=
(2)当x为何值时,y=0?
(3)①若自变量x的取值范围是0≤x≤5,求函数值y的取值范围;
②若函数值y为正数,则自变量x的取值范围.
【答案】(1)-1(2)1±2(3)①﹣2≤x≤2②x<1﹣2或x>1+2
【解析】
(1)从表格看出,函数的对称轴为x=1,顶点为(1,﹣2),x=3和x=﹣1时关于对称轴的对称点,故x=3时,y=﹣1;
(2)把顶点坐标、点(﹣1,﹣1)代入函数表达式,即可求解;
(3)①当0≤x≤5,函数在顶点处取得最小值,在x=5时,函数取得最大值,即可求解;②若函数值y为正数,则x<1﹣2或x>1+2.
(1)从表格看出,函数的对称轴为x=1,顶点为(1,﹣2),故x=3时,y=﹣1,
故:答案是﹣1;
(2)把顶点坐标代入二次函数顶点式表达式得:y=a(x﹣1)2﹣2,
把点(﹣1,﹣1)代入上式得:﹣1=a(﹣1﹣1)2﹣2,解得:a=,
则函数表达式为:y=(x﹣1)2﹣2,
令y=0,则x=1±2;
(3)①当0≤x≤5,函数在顶点处取得最小值,y=﹣2,
当x=5时,函数取得最大值y=(5﹣1)2﹣2=2,
即:函数值y的取值范围为:﹣2≤x≤2;
②若函数值y为正数,则x<1﹣2或x>1+2.
练习册系列答案
相关题目