题目内容
【题目】如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.
(1)求的长.
(2)若点是线段的中点,求的值.
(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?
【答案】(1) ;(2);(3)当或时,满足条件的点只有一个.
【解析】
(1)由角平分线定义得,在中,根据锐角三角函数正切定义即可求得长.
(2)由题意易求得,,由全等三角形判定得,根据全等三角形性质得,根据相似三角形判定得,由相似三角形性质得,将代入即可求得答案.
(3)由圆周角定理可得是顶角为120°的等腰三角形,再分情况讨论:
①当与相切时,结合题意画出图形,过点作,并延长与交于点,连结,,设半径为,由相似三角形的判定和性质即可求得长;
②当经过点时,结合题意画出图形,过点作,设半径为,在中,根据勾股定理求得,再由相似三角形的判定和性质即可求得长;③当经过点时,结合题意画出图形,此时点与点重合,且恰好在点处,由此可得长.
(1)解:∵平分,,
∴.
在中,
(2)解:易得,,.
由,得,.
∵,
∴,
∴.
由,得,
∴
∴
(3)解:∵,过,,作外接圆,圆心为,
∴是顶角为120°的等腰三角形.
①当与相切时,如图1,
过点作,
并延长与交于点,连结,
设的半径则,,
解得.
∴,.
易知,可得,则
∴.
②当经过点时,如图2,
过点作,垂足为.
设的半径,则.
在中,,解得,
∴
易知,可得
③当经过点时,如图3,
此时点与点重合,
且恰好在点处,可得.
综上所述,当或时,满足条件的点只有一个.
【题目】某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y(万件)与销售单价x(元)之间的部分数据如下:
销售单价x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月销售量y(万件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月销售量y(万件)与销售单价x(元)之间的函数关系式.
(2)求出每月的利润z(万元)与销售单x(元)之间的函数关系式.
(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)
【题目】重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年, 且x为整数;后4年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年, 且x为整数假设每年的公租房全部出租完另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金单位:元与时间单位:年, 且x为整数满足一次函数关系如下表:
元 | 50 | 52 | 54 | 56 | 58 | |
年 | 1 | 2 | 3 | 4 | 5 |
求出z与x的函数关系式;
求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高,这样可解决住房的人数将比第6年减少,求a的值.
参考数据: