题目内容

【题目】如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=116°,∠ACF=25°,求∠FEC的度数.

【答案】解:∵EF∥AD,AD∥BC,
∴EF∥BC,
∴∠ACB+∠DAC=180°,
∵∠DAC=116°,
∴∠ACB=64°,
又∵∠ACF=25°,
∴∠FCB=∠ACB﹣∠ACF=39°,
∵CE平分∠BCF,
∴∠BCE=19.5°,
∵EF∥BC,
∴∠FEC=∠ECB,
∴∠FEC=19.5°.
【解析】由EF与AD平行,AD与BC平行,利用平行于同一条直线的两直线平行得到EF与BC平行,利用两直线平行同旁内角互补求出∠ACB度数,进而求出∠FCB度数,根据CE为角平分线求出∠BCE度数,再利用两直线平行内错角相等即可求出所求角度数.
【考点精析】掌握平行线的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网