题目内容

如图,在平面直角坐标系中,△ABC为等腰三角形,AB=AC,将△AOC沿直线AC折叠,点O落在直线AD上的点E处,直线AD的解析式为y=-
3
4
x+6
,则
(1)AO=______;AD=______;OC=______;
(2)动点P以每秒1个单位的速度从点B出发,沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S与t之间的函数关系式;
(3)在(2)的条件下,直线CE上是否存在一点Q,使以点Q、A、D、P为顶点的四边形是平等四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.
(1)∵A、D是直线y=-
3
4
x+6上的点,
∴A(0,6),D(8,0),
∴AO=6,OD=8;
∵△AOD是直角三角形,
∴AD=
AO2+OD2
=
62+82
=10,
∵△ACE由△ACO反折而成,
∴AE=AO=6,CE⊥AD,
∴DE=QD-AE=10-6=4,
∵∠ADO=∠ADO,∠AOD=∠CED,
∴△AOD△CED,
AD
CD
=
OD
ED
10
CD
=
8
4
,解得CD=5,
∴OC=OD-CD=8-5=3.

(2)当P在线段BO上时,即0<t<3时;
∵∠BAC=∠PAQ,
∴∠BAP=∠CAQ=∠BAC-∠PAC=∠PAQ-∠PAC;
又∵∠ABP=∠ACQ=∠ACO,且AB=AC,
∴△ABP≌△ACQ,得BP=CQ=t,OP=3-t;
∴△POQ的面积为:S=
1
2
OP•CQ•sin∠ECD=
1
2
(3-t)×
4
5
t,即S=-
2
5
t2+
6
5
t;
当P在x轴正半轴上时,即t>3时;
同①可得:BP=CQ=t,OP=t-3;
∴S=
1
2
OP•CQ•sin∠ECD=
1
2
(t-3)×
4
5
t,
即S=
2
5
t2-
6
5
t;
综上可知:S=
-
2
5
t2+
6
5
t(0<t<3)
2
5
t2-
6
5
t(t>3)


(3)分两种情况:
①0<t<3时,显然不存在以AD为边的情况,那么只考虑以AD为对角线的情况;
此时P(t-3,0),取易知AD的中点为:(4,3);
∵平行四边形中,以AD、PQ为对角线,
∴AD的中点也是PQ的中点;
∴Q(11-t,6);
∵直线CE:y=
4
3
x-4,代入Q点坐标得:
4
3
(11-t)-4=6,解得t=
7
2
;即BP=CQ=
7
2

∴Q(
3
2
×
3
5
+3,
3
2
×
4
5
),即Q(
51
10
14
5
);
②t>3时,显然不存在以AD为对角线的情况,那么只考虑以AD为边的情况;
此时PFDP,即F点纵坐标为6,由①得,此时F(
15
2
,6);
即DP=AF=
15
2
,BP=BD+DP=11+
15
2
=
37
2
,即t=
37
2

此时CQ=BP=
37
2
,同①可求得:Q(
141
10
74
5
).
综上可知:存在符合条件的F点,此时的t值和Q点坐标分别为:t=
3
2
,Q(
51
10
14
5
)或t=
37
2
,Q(
141
10
74
5
).
故答案为:10,6,3.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网