题目内容

精英家教网二次函数y=
2
3
x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=
2
3
x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△A0B1A1的边长=
 
;△A1B2A2的边长=
 
;△A2007B2008A2008的边长=
 
分析:先计算出△A0B1A1;△A1B2A2;△A2B3A2的边长,推理出各边长组成的数列各项之间的排列规律,依据规律得到△A2007B2008A2008的边长.
解答:精英家教网解:作B1A⊥y轴于A,B2B⊥y轴于B,B3C⊥y轴于C.
设等边△A0B1A1、△A1B2A2、△A2B3A3中,AA1=a,BA2=b,CA2=c.
①等边△A0B1A1中,A0A=a,
所以B1A=atan60°=
3
a,代入解析式得
2
3
×(
3
a)2=a,解得a=0(舍去)或a=
1
2
,于是等边△A0B1A1的边长为
1
2
×2=1;
②等边△A2B2A1中,A1B=b,
所以BB2=btan60°=
3
b,B2点坐标为(
3
b,1+b)代入解析式得
2
3
×(
3
b)2=1+b,
解得b=-
1
2
(舍去)或b=1,
于是等边△A2B1A1的边长为1×2=2;
③等边△A2B3A3中,A2C=c,
所以CB3=btan60°=
3
c,B3点坐标为(
3
c,3+c)代入解析式得
2
3
×(
3
c)2=3+c,
解得c=-1(舍去)或c=
3
2

于是等边△A3B3A2的边长为
3
2
×2=3.
于是△A2007B2008A2008的边长为2008.
点评:此题将二次函数和等边三角形的性质结合在一起,是一道开放题,有利于培养同学们的探索发现意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网