题目内容
【题目】已知等边三角形的高为6,在这个三角形所在的平面内有一个点,若点到的距离是1,点到的距离是2,则点到的最小距离与最大距离分别是_______.
【答案】3和9
【解析】
根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出DB与FB的长,以及CG与CE的长,进而由DB+BC+CE求出DE的长,由BC-BF-CG求出FG的长,求出等边三角形NFG与等边三角形MDE的高,即可确定出点P到BC的最小距离和最大距离.
解:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,
当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,
根据题意得到△NFG与△MDE都为等边三角形,
∵等边三角形ABC的高为6
∴等边三角形ABC的边长:BC=
∴DB=FB,CE=CG,
∴DE=DB+BC+CE=+=,
FG=BC-BF-CG=
∴NH=3,MQ=9
则点P到BC的最小距离和最大距离分别是3,9.
故答案为:3,9.
练习册系列答案
相关题目