题目内容
【题目】如图,二次函数的图象经过点,直线与轴交于点为二次函数图象上任一点.
求这个二次函数的解析式;
若点是直线上方抛物线上一点,过分别作和轴的垂线,交直线于不同的两点在的左侧),求周长的最大值;
是否存在点,使得是以为直角边的直角三角形?如果存在,求点的坐标;如果不存在,请说明理由.
【答案】;最大周长为;或或.
【解析】
(1)运用待定系数法求这个二次函数的解析式;
(2)先求解的解析式,证明 得到 利用的坐标表示的长度,利用三角函数求解的长度,建立周长与的横坐标之间的函数关系式,利用函数的最值求周长的最大值,
(3)分情况讨论:以为直角顶点,利用 可直接得到答案,以为直角顶点时,利用求解的解析式,联立一次函数与二次函数的解析式可得答案.
解:(1)
设抛物线为:
把代入
(2)设直线为
解得:
轴,轴,
设
的周长
当时,周长最大.
最大周长为:
(3)如图,当时,
为抛物线与轴的交点,
当时,与轴交于点,
设的解析式为:
解得:
为
解得:
或
综上:以为直角边的直角三角形时,点坐标为或或.
练习册系列答案
相关题目