题目内容
【题目】如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.
(1)求该双曲线所表示的函数解析式;
(2)求等边△AEF的边长.
【答案】解:(1) 过点C作CG⊥OA于点G,
∵点C是等边△OAB的边OB的中点,
∴OC=2,∠ AOB=60°。∴OG=1,CG=,
∴点C的坐标是(1, )。由,得:k=。
∴该双曲线所表示的函数解析式为。
(2) 过点D作DH⊥AF于点H,设AH=a,则DH=a。
∴点D的坐标为(4+a, a)。
∵点D是双曲线上的点,
∴由xy=,得a (4+a)=,即:a2+4a-1=0。
解得:a1=-2,a2=--2(舍去)。∴AD=2AH=2-4。
∴等边△AEF的边长是2AD=4-8。.
【解析】(1)过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式列式计算即可得解。
(2)过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解。
练习册系列答案
相关题目