题目内容
【题目】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°, ①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 , 数量关系为 .
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.
【答案】
(1)垂直;相等;解:成立,理由如下: ∵∠FAD=∠BAC=90°
∴∠BAD=∠CAF
在△BAD与△CAF中,
∵
∴△BAD≌△CAF(SAS)
∴CF=BD,∠ACF=∠ACB=45°,
∴∠BCF=90°
∴CF⊥BD
(2)解:当∠ACB=45°时可得CF⊥BC,理由如下:
过点A作AC的垂线与CB所在直线交于G
则∵∠ACB=45°
∴AG=AC,∠AGC=∠ACG=45°
∵AG=AC,AD=AF,
∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,
∴∠GAD=∠FAC,
∴△GAD≌△CAF(SAS)
∴∠ACF=∠AGD=45°
∴∠GCF=∠GCA+∠ACF=90°
∴CF⊥BC
【解析】解:(1)①CF⊥BD,CF=BD 所以答案是:垂直、相等.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对正方形的性质的理解,了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.