题目内容

如图,四边形ABCD是菱形,点D的坐标是(0,
3
),以点C为顶点的抛物线y=ax2+bx+c恰经过x轴上的点A,B.
(1)求点C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.
(1)连接AC,在菱形ABCD中,CDAB,
AB=BC=CD=DA,
由抛物线对称性可知AC=BC.(1分)
∴△ABC,△ACD都是等边三角形.
∴CD=AD=
OD
sin60°
=2(2分)
∴点C的坐标为(2,
3
).(3分)

(2)由抛物线y=ax2+bx+c的顶点为(2,
3
),
可设抛物线的解析式为.y=a(x-2)2+
3

由(1)可得A(1,0),把A(1,0)代入上式,
解得a=-
3
.(5分)
设平移后抛物线的解析式为y=-
3
(x-2)2+k,
把(0,
3
)代入上式得K=5
3

∴平移后抛物线的解析式为:
y=-
3
(x-2)2+5
3
(7分)
即y=-
3
x2+4
3
x+
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网