题目内容
【题目】如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.
(1)求证:FE⊥AB;
(2)当EF=6,时,求DE的长.
【答案】
(1)
【解答】证明:连接AD、OD,
∵AC为⊙O的直径,
∴∠ADC=90°,
又∵AB=AC,
∴CD=DB,又CO=AO,
∴OD∥AB,
∵FD是⊙O的切线,
∴OD⊥EF,
∴FE⊥AB;
(2)
∵,
∴,
∵OD∥AB,
∴,又EF=6,
∴DE=9.
【解析】(1)连接AD、OD,根据直径所对的圆周角是直角求出∠ADC=90°,根据等腰三角形的性质证明D是BC的中点,得到OD是△ABC的中位线,根据切线的性质证明结论;
(2)根据平行线分线段成比例定理,列出比例式计算得到答案.
练习册系列答案
相关题目
【题目】在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数 | 100 | 1000 | 5000 | 10000 | 50000 | 100000 |
摸出黑球次数 | 46 | 487 | 2506 | 5008 | 24996 | 50007 |
根据列表,可以估计出n的值是 .