题目内容

【题目】⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离

【答案】7cn或17cm
【解析】解:作OE⊥AB于E,交CD于F,连结OA、OC,如图,
∵AB∥CD,
∴OF⊥CD,
∴AE=BE= AB=12,CF=DF= CD=5,
在Rt△OAE中,∵OA=13,AE=12,
∴OE= =5,
在Rt△OCF中,∵OC=13,CF=5,
∴OF= =12,
当圆心O在AB与CD之间时,EF=OF+OE=12+5=17;
当圆心O不在AB与CD之间时,EF=OF﹣OE=12﹣5=7;
即AB和CD之间的距离为7cn或17cm.
所以答案是7cn或17cm.

【考点精析】解答此题的关键在于理解垂径定理的相关知识,掌握垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网