题目内容
在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形.(1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;
(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长);若不能请说明理由.
分析:(1)连接PC,通过证明△DPC≌△EPB,得出PD=PE.
(2)分EP=EB、EP=PB时、BE=BP三种情况进行解答.
(2)分EP=EB、EP=PB时、BE=BP三种情况进行解答.
解答:
解:(1)PD=PE.以图②为例,如图,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(ASA)
∴PD=PE;
(2)能,①当EP=EB时,CE=
BC=1.
②当EP=PB时,点E在BC上,则点E和C重合,CE=0.
③当BE=BP时,若点E在BC上,则CE=2-
.
若点E在CB的延长线上,则CE=2+
.
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(ASA)
∴PD=PE;
(2)能,①当EP=EB时,CE=
| 1 |
| 2 |
②当EP=PB时,点E在BC上,则点E和C重合,CE=0.
③当BE=BP时,若点E在BC上,则CE=2-
| 2 |
若点E在CB的延长线上,则CE=2+
| 2 |
点评:本题考查了等腰三角形的性质与判定;此题是分类讨论题,应分情况进行论证,不能漏解.辅助线的作出是解答本题的关键.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |