题目内容

【题目】如图,在平面直角坐标系中,已知点A(0,1),直线l:y=﹣1.动点P满足条件:

①P在这个平面直角坐标系中;
②P到A的距离和P到l的距离相等;
(1)求点P所经过的轨迹方程,并在网格中绘制这个图象.(提示:平面直角坐标系中两点之间的距离可以通过勾股定理来求得)
(2)已知直线y=kx+1,小明同学说,这条直线与(1)中所绘的图象有两个交点?你能说明小明为什么这么说吗?
(3)经过了上述的计算、绘图,小明发现,如果第(2)问的两个交点分别为B、C,那么,过BC的中点M作直线l的垂线,垂足为H,连接BH、CH,所得到的三角形BCH是个特殊的三角形,你能说明它是什么三角形吗?为什么?

【答案】
(1)

解:设P的坐标为P(x,y),由题意得: =|y+1|,

两边平方得:x2+(y﹣1)2=(y+1)2

∴y= x2,即P的轨迹为一抛物线,其图象如图1所示;


(2)

解:抛物线直线方程联立得 ,消去y可得x2﹣4kx﹣4=0,

∴△=16k2+16>0,

∴直线y=kx+1与抛物线有两个交点;


(3)

解:如图2,过B作BB′⊥l于B′,过C作CC′⊥l于C′,

由(1)中的条件可得BB′=BA,CC′=CA,

∴BC=BA+AC=BB′+CC′,

又由题意可得MH是梯形BB′C′C的中位线,

∴MH= (BB′+CC′)= BC,

∴MB=MC=MH,

∴△BHC是以∠BHC为直角的直角三角形.


【解析】(1)设出P点坐标,表示出P到A的距离和P到l的距离相等,可求得其轨迹方程,可画出图象;(2)联立直线与抛物线解析式利用一元二次方程的判别式可判断得出;(3)过B作BB′⊥l于B′,过C作CC′⊥l于C′,由条件可证明MH为梯形BB′C′C的中位线,可证得△BCH为直角三角形.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网