题目内容

【题目】如图,在△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=

【答案】
【解析】如图,连接BB′,

∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,

∴AB=AB′,∠BAB′=60°,

∴△ABB′是等边三角形,

∴AB=BB′,

在△ABC′和△B′BC′中,

∴△ABC′≌△B′BC′(SSS),

∴∠ABC′=∠B′BC′,

延长BC′交AB′于D,

则BD⊥AB′,

∵∠C=90,AC=BC=

∴AB= =2,

∴BD=2× =

C′D= ×2=1,

∴BC′=BDC′D= 1.

故答案为: 1.

连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网