题目内容
【题目】如图1,过等边三角形ABC边AB上一点D作DE∥BC交边AC于点E,分别取BC,DE的中点M,N,连接MN.
(1)发现:在图1中,= ;
(2)应用:如图2,将△ADE绕点A旋转,请求出的值;
(3)拓展:如图3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分别是底边BC,DE的中点,若BD⊥CE,请直接写出的值.
【答案】(1);(2) ;(3) .
【解析】分析:(1)如图1中,作DH⊥BC于H,连接AM.只要证明四边形MNDH时矩形,即可解决问题;
(2)如图2中,连接AM、AN.只要证明△BAD∽△MAN,利用相似比为即可解决问题;
(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.由△BAD∽△MAN,推出==sin∠ABC,只要证明△ABC时等腰直角三角形即可解决问题.
详解:(1)如图1中,作DH⊥BC于H,连接AM.
∵AB=AC,BM=CM,
∴AM⊥BC,
∵△ADE时等边三角形,
∴∠ADE=60°=∠B,
∴DE∥BC,
∵AM⊥BC,
∴AM⊥DE,
∴AM平分线段DE,
∵DN=NE,
∴A、N、M共线,
∴∠NMH=∠MND=∠DHM=90°,
∴四边形MNDH时矩形,
∴MN=DH,
∴==sin60°=,
故答案为.
(2)如图2中,连接AM、AN.
∵△ABC,△ADE都是等边三角形,BM=MC,DN=NE,
∴AM⊥BC,AN⊥DE,
∴=sin60°,=sin60°,
∴=,
∵∠MAB=∠DAN=30°,
∴∠BAD=∠MAN,
∴△BAD∽△MAN,
∴==sin60°=.
(3)如图3中,连接AM、AN,延长AD交CE于H,交AC于O.
∵AB=AC,AD=AE,BM=CM,DN=NE,
∴AM⊥BC,AN⊥DE,
∵∠BAC=∠DAE,
∴∠ABC=∠ADE,
∴sin∠ABM=sin∠ADN,
∴=,
∵∠BAM=BAC,∠DAN=∠DAE,
∴∠BAM=∠DAN,
∴∠BAD=∠MAN.
∴△BAD∽△MAN,
∴==sin∠ABC,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵BD⊥CE,
∴∠BHC=90°,
∴∠ACE+∠COH=90°,
∵∠AOB=∠COH,
∴∠ABD+∠AOB=90°,
∴∠BAO=90°,
∵AB=AC,
∴∠ABC=45°,
∴=sin45°=.
【题目】在我市实施“城乡环境综合治理”期间,某校组织学生开展“走出校门,服务社会”的公益活动.八年级一班王浩根据本班同学参加这次活动的情况,制作了如下的统计图表:
该班学生参加各项服务的频数、频率统计表:
服务类别 | 频数 | 频率 |
文明宣传员 | 4 | 0.08 |
文明劝导员 | 10 | |
义务小警卫 | 8 | 0.16 |
环境小卫士 | 0.32 | |
小小活雷锋 | 12 | 0.24 |
请根据上面的统计图表,解答下列问题:
(1)该班参加这次公益活动的学生共有 名;
(2)请补全频数、频率统计表和频数分布直方图;
(3)若八年级共有900名学生报名参加了这次公益活动,试估计参加文明劝导的学生人数.