题目内容
【题目】如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.
(1)求证:DE⊥DF;
(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;
(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.
【答案】(1)见解析;(2)64;(3)
【解析】
(1)证明,根据全等三角形的性质得到,根据垂直的定义证明;
(2)根据三角形的外角的性质、等腰三角形的判定定理得到,根据三角形的周长公式求出,根据正方形的面积公式计算;
(3)作交的延长线于点,证明,得到,,根据勾股定理列方程求出,计算即可.
(1)证明:四边形是正方形,
,,
在和中,
,
,
,
,即,
;
(2)解:,,
,
,
的周长为16
,
,
,
;
(3)过点作交的延长线于点,
,,
垂直平分,
,
,,
,即,
在四边形中,,,
,
在和中,
,
,,
在中,,
,
,,
在中,设,则,
由勾股定理得,
解得:,
.
练习册系列答案
相关题目