题目内容
【题目】如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,作BF⊥AM于点F,连接BE. 若AF=1,四边形ABED的面积为6,则BF的长为( )
A.2B.3C.D.
【答案】B
【解析】
先证明ΔABF≌ΔDAE得到BF=AE,设BF=x,则AE=x,DE=AF=1,利用四边形ABED的面积=得,解之即可求得BF的长.
∵四边形ABCD是正方形,
∴BA=AD,∠BAD=90,
∴∠DAE+∠BAF=90,
∵BF⊥AM,DE⊥AM,
∴∠AFB=∠DEA=90,
∴∠ABF+∠BAF=90,
∴∠ABF=∠DAE,
在ΔABF和ΔDAE中
∴ΔABF≌ΔDAE(AAS),
∴BF=AE,DE=AF=1
设BF=x,则AF=x,
由四边形ABED的面积为6得:
,即,
解得:(舍去),
∴BF=3,
故选:B.
练习册系列答案
相关题目