题目内容

【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间 每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x10的正整数倍).

1)设一天订住的房间数为y,直接写出yx的函数关系式及自变量x的取值范围;

2)设宾馆一天的利润为w元,求wx的函数关系式;

3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

【答案】1y=50-,且0≤x≤160,且x10的正整数倍.(2w=-x2+34x+8000;(3)一天订住34个房间时,宾馆每天利润最大,最大利润为10880元.

【解析】试题分析:(1)理解每个房间的房价每增加x元,则减少房间间,则可以得到yx之间的关系;

2)每个房间订住后每间的利润是房价减去20元,每间的利润与所订的房间数的积就是利润;

3)求出二次函数的对称轴,根据二次函数的增减性以及x的范围即可求解.

试题解析:(1)由题意得:

y=50-,且0≤x≤160,且x10的正整数倍.

2w=180-20+x)(50-),即w=-x2+34x+8000

3w=-x2+34x+8000=-x-1702+10890

抛物线的对称轴是:x=170,抛物线的开口向下,当x170时,wx的增大而增大,

0≤x≤160,因而当x=160时,即房价是340元时,利润最大,

此时一天订住的房间数是:50-=34间,

最大利润是:34×340-20=10880元.

答:一天订住34个房间时,宾馆每天利润最大,最大利润为10880元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网