题目内容
【题目】已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)如图①,BF垂直CE于点F,交CD于点G,试说明AE=CG;
(2)如图②,作AH垂直于CE的延长线,垂足为H,交CD的延长线于点M,则图中与BE相等的线段是 , 并说明理由.
【答案】
(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,
∴CD⊥AB,∠ACD=∠BCD=45°,
∴∠CAD=∠CBD=45°,
∴∠CAE=∠BCG,
又∵BF⊥CE,
∴∠CBG+∠BCF=90°,
又∵∠ACE+∠BCF=90°,
∴∠ACE=∠CBG,
在△AEC和△CGB中,
,
∴△AEC≌△CGB(ASA),
∴AE=CG
(2)CM
【解析】(2)答:BE=CM
理由:∵CD平分∠ACB,
∴∠ACD=∠BCD=45°,
在△BCD和△ACD中,
,
∴△BCD≌△ACD(SAS),
∴∠ADC=∠CDB,
∵∠ADC+∠CDB=180°,
∴∠ADC=∠CDB=90°,
∴∠CBE=45°,
∵CH⊥HM,CD⊥ED,
∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,
∴∠CMA=∠BEC,
在△BCE和△CAM中,
,
∴△BCE≌△CAM(AAS),
∴BE=CM.
所以答案是:CM.
练习册系列答案
相关题目