题目内容
【题目】如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是( )
A.(4,8)
B.(5,8)
C.( , )
D.( , )
【答案】C
【解析】解:∵矩形ABCO中,OA=8,OC=4,
∴BC=OA=8,AB=OC=4,
由折叠得到OD=OA=BC,∠AOB=∠DOB,∠ODB=∠BAO=90°,
在Rt△CBO和Rt△DOB中,
,
∴Rt△CBO≌Rt△DOB(HL),
∴∠CBO=∠DOB,
∴OE=EB,
设CE=x,则EB=OE=8﹣x,
在Rt△COE中,根据勾股定理得:(8﹣x)2=x2+42 ,
解得:x=3,
∴CE=3,OE=5,DE=3,
过D作DF⊥BC,可得△COE∽△FDE,
∴ = = ,即 = = ,
解得:DF= ,EF= ,
∴DF+OC= +4= ,CF=3+ = ,
则D( , ),
故选C.
【考点精析】通过灵活运用翻折变换(折叠问题),掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.
练习册系列答案
相关题目