题目内容
如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为
.其中,正确的结论是( )
3 |
2 |
A、①②④ | B、①③⑤ |
C、②③④ | D、①④⑤ |
分析:首先根据已知条件看能得到哪些等量条件,然后根据得出的条件来判断各结论是否正确.
解答:解:∵△ABC、△DCE都是等腰Rt△,
∴AB=AC=
BC=
,CD=DE=
CE;
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB-∠ACE=∠DCE-∠ACE;
即∠ECB=∠DCA;故①正确;
②当B、E重合时,A、D重合,此时DE⊥AC;
当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC必为锐角;
故②不完全正确;
④∵
=
=
,∴
=
;
由①知∠ECB=∠DCA,∴△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;
③由④知:∠DAC=45°,则∠EAD=135°;
∠BEC=∠EAC+∠ECA=90°+∠ECA;
∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;
因此△EAD与△BEC不相似,故③错误;
⑤△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;
△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;
由④的△BEC∽△ADC知:当AD最长时,BE也最长;
故梯形ABCD面积最大时,E、A重合,此时EC=AC=
,AD=1;
故S梯形ABCD=
(1+2)×1=
,故⑤正确;
因此本题正确的结论是①④⑤,故选D.
∴AB=AC=
| ||
2 |
2 |
| ||
2 |
∠B=∠ACB=∠DEC=∠DCE=45°;
①∵∠ACB=∠DCE=45°,
∴∠ACB-∠ACE=∠DCE-∠ACE;
即∠ECB=∠DCA;故①正确;
②当B、E重合时,A、D重合,此时DE⊥AC;
当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC必为锐角;
故②不完全正确;
④∵
CD |
EC |
AC |
BC |
| ||
2 |
CD |
AC |
CE |
BC |
由①知∠ECB=∠DCA,∴△BEC∽△ADC;
∴∠DAC=∠B=45°;
∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;
③由④知:∠DAC=45°,则∠EAD=135°;
∠BEC=∠EAC+∠ECA=90°+∠ECA;
∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;
因此△EAD与△BEC不相似,故③错误;
⑤△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;
△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;
由④的△BEC∽△ADC知:当AD最长时,BE也最长;
故梯形ABCD面积最大时,E、A重合,此时EC=AC=
2 |
故S梯形ABCD=
1 |
2 |
3 |
2 |
因此本题正确的结论是①④⑤,故选D.
点评:此题主要考查了等腰直角三角形的性质、平行线的判定、相似三角形的判定和性质、图形面积的求法等知识,综合性强,难度较大.
练习册系列答案
相关题目
如图,△ABC为等腰直角三角形,它的面积为8平方厘米,以它的斜边为边的正方形BCDE的面积为( )平方厘米.
A、16 | B、24 | C、64 | D、32 |