题目内容
【题目】新定义:对于关于的函数,我们称函数为函数y的m分函数(其中m为常数).
例如:对于关于x一次函数的分函数为
(1)若点在关于x的一次函数的分函数上,求的值;
(2)写出反比例函数的分函数的图象上y随x的增大而减小的x的取值范围: ;
(3)若是二次函数关于x的分函数,
①当时,求y的取值范围;
②当时,,则的取值范围为 ;
③若点,连结,当关于的二次函数的分函数,与线段MN有两个交点,直接写出m的取值范围.
【答案】(1)n=3;(2)或;(3)①或;②;③m<或≤m<或≤m.
【解析】
(1)首先写出一次函数 的分函数,然后将点P代入即可求出n;
(2)首先写出反比例函数的分函数,然后根据反比例函数的增减性进行判定;
(3)①首先写出二次函数的分函数,然后根据x的取值范围结合二次函数的性质分别求出对应的y的取值范围即可;
②首先求出当时,的取值范围为,当时,,然后根据可知,求出时的值在-3和-4之间(包含-3和-4)对应的x的取值范围即可;
③画出和的函数图像,求出两函数图象与y=1的交点的横坐标,然后结合函数图象分类讨论,分别求出在不同的范围内与线段MN的交点个数,即可得到符合题意的m的取值范围.
解:(1)由题意得:,
∵,
∴把代入得,
∴;
(2)由题意得:,
根据函数解析式可知,当或时,y随x的增大而减小;
(3)①由题意得:,
当时,的图象y随x的增大而减小,
把代入,可得,
把代入,可得;
当时,的图象y随x的增大而减小,
把代入,可得,
把代入,可得,
综上,的取值范围为或;
②∵把代入,可得,
把代入,可得;
∴当时,的取值范围为,
由①知,当时,,
把y=-3代入,解得:(负值已舍去),
把y=-4代入,解得:(负值已舍去),
∴的取值范围为;
③如图为和的函数图像,A、B、C、D分别是两函数图象与y=1的交点,
联立,解得:,
∴A点横坐标为,D点横坐标为,
联立,解得:,
∴B点横坐标为,C点横坐标为,
结合函数图象,分类讨论:
①当m<时,关于的二次函数的分函数,与线段MN有两个交点;
②当≤m<时,关于的二次函数的分函数,与线段MN有三个交点;
③当≤m<时,关于的二次函数的分函数,与线段MN有两个交点;
④≤m<时,关于的二次函数的分函数,与线段MN有一个交点;
⑤当≤m时,关于的二次函数的分函数,与线段MN有两个交点;
综上所述:m的取值范围是m<或≤m<或≤m.