题目内容
【题目】如图,在正方形 ABCD 中,E 为直线 AB 上的动点(不与 A、B 重合),作射线 DE 并绕点 D 逆时针旋转 45°,交直线 BC 于点 F,连接 EF.
探究:当点 E 在边 AB 上,求证:EF=AE+CF.
应用:(1)当点 E 在边 AB 上,且 AD=2 时,求△BEF 的周长;
(2)当点 E 在 BA 延长线上时,判断 EF,AE,CF 三者的数量关系,并说明理由.
【答案】探究:证明见解析;应用:(1)△BEF 的周长为4;(2)EF=CF﹣AE,理由见解析.
【解析】
探究:作辅助线,构建全等三角形,证明△DAG≌△DCF(SAS),得∠1=∠3,DG=DF,再证明△GDE≌△FDE(SAS),根据EG的长可得结论;
应用:
(1)利用探究的结论计算三角形周长为4;
(2)分两种情况:①点E在BA的延长线上时,EF=CF-AE,②当点E在AB的延长线上时, EF=AE-CF,两种情况都是作辅助线,构建全等三角形,证明两三角形全等得线段相等,根据线段的和与差得出结论.
探究:
如下图:延长 BA 到 G,使 AG=CF,连接 GD,
∵四边形 ABCD 为正方形,∴DA=DC,∠DAG=∠DCF=90°,
∴△DAG≌△DCF(SAS),
∴∠1=∠3,DG=DF,
∵∠DAC=90°,∠EDF=45°,
∴∠EDG=∠1+∠2=∠3+∠2=45°=∠EDF,
∵DE=DE,
∴△GDE≌△FDE(SAS),
∴EF=EG=AG+AE=AE+CF;
应用:
(1)△BEF 的周长=BE+BF+EF,
由探究得:△BEF 的周长=BE+BF+EF=AB+BC=2+2=4,
(2)点 E 在 BA 的延长线上时,如下图:
EF=CF﹣AE,理由是:
在 CB 上取 CG=AE,连接 DG,
∵∠DAE=∠DCG=90°,AD=DC,
∴△DAE≌△DCG(SAS),
∴DE=DG,∠EDA=∠GDC,
∵∠ADC=90°,∠EDG=90°,
∴∠EDF+∠FDG=90°,
∵∠EDF=45°,
∴∠FDG=90°﹣45°=45°, 在△EDF 和△GDF 中,
DE=DG,∠EDF=∠GDF,DF=DF,∴△EDF≌△GDF(SAS),
∴FE=FG,
∴EF=CF﹣CG=CF﹣AE.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某市现在有两种用电收费方法:
分时电表 | 普通电表 | |
峰时(8:00~21:00) | 谷时(21:00到次日8:00) | |
电价0.55元/千瓦·时 | 电价0.35元/千瓦·时 | 电价0.52元/千瓦·时 |
小明家所在的小区用的电表都换成了分时电表.
解决问题:
(1)小明家庭某月用电总量为千瓦·时(
为常数);谷时用电
千瓦·时,峰时用电
千瓦·时,分时计价时总价为
元,普通计价时总价为
元,求
,
与用电量的函数关系式.
(2)小明家庭使用分时电表是不是一定比普通电表合算呢?
(3)下表是路皓家最近两个月用电的收据:
谷时用电(千瓦·时) | 峰时用电(千瓦·时) |
181 | 239 |
根据上表,请问用分时电表是否合算?
【题目】某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
频数分布表
分组 | 划记 | 频数 |
2.0<x≤3.5 | 正正 | 11 |
3.5<x≤5.0 | 19 | |
5.0<x≤6.5 | ||
6.5<x≤8.0 | ||
8.0<x≤9.5 | 2 | |
合计 | 50 |
(1)把上面频数分布表和频数分布直方图补充完整;
(2)从直方图中你能得到什么信息?(写出两条即可);
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?