题目内容

【题目】如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.

(1)求证:EF⊥AB;
(2)若∠C=30°,EF= ,求EB的长.

【答案】
(1)证明:连接OD,AD,

∵AC为⊙O的直径,

∴∠ADC=90°.

又∵AB=AC,

∴CD=DB.又CO=AO,

∴OD∥AB.

∵FD是⊙O的切线,

∴OD⊥DF.∴FE⊥AB


(2)解:∵∠C=30°,

∴∠AOD=60°,

在Rt△ODF中,∠ODF=90°,

∴∠F=30°,

∴OA=OD= OF,

在Rt△AEF中,∠AEF=90°,∠F=30°

∵EF=

∴AE=EFtan30°=

∵OD∥AB,OA=OC=AF,

∴OD=2AE=2 ,AB=2OD=4

∴EB=3


【解析】(1)连接OD,AD,只要证明OD是△ABC中位线即可解决问题.(2)首先证明AE是△ODF中位线,在Rt△AEF中求出AE,再求出OD,根据AB=2OD,求出AB即可问题.
【考点精析】通过灵活运用等腰三角形的性质和切线的性质定理,掌握等腰三角形的两个底角相等(简称:等边对等角);切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网