题目内容
【题目】如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC的长为( )
A.
B.6
C.
D.
【答案】B
【解析】解:过点O作OF⊥BC于F,
∴BF=CF= BC,
∵AB=AC,∠BAC=120°,
∴∠C=∠ABC= =30°,
∵∠C与∠D是 对的圆周角,
∴∠D=∠C=30°,
∵BD为⊙O的直径,
∴∠BAD=90°,
∴∠ABD=60°,
∴∠OBC=∠ABD﹣∠ABC=30°,
∵AD=6,
∴BD= = =4 ,
∴OB= BD=2 ,
∴BF=OBcos30°=2 × =3,
∴BC=6.
所以答案是:B.
【考点精析】本题主要考查了等腰三角形的性质和垂径定理的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角);垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能正确解答此题.
练习册系列答案
相关题目