题目内容
14、已知:方程x2-2(k-1)x+2k2-12k+17=0,两根为x1、x2,求x12+x22的最大值与最小值,并求此时方程的根.
分析:先根据判别式△≥0求出k的取值范围,再根据根与系数的关系求解即可.
解答:解:方程x2-2(k-1)x+2k2-12k+17=0,两根为x1、x2,
∴x1+x2=2(k-1),x1x2=2k2-12k+17,
∴x12+x22=(x1+x2)2-2x1x2
=4(k2-2k+1)-2(2k2-12k+17)
=-8k+4+24k-34
=16k-30,
∵△=4(k2-2k+1)-4(2k2-12k+17)
=-4k2+40k-64≥0,
解得:2≤k≤8,
∴当k=8时,最大值为98,方程为x2-14x+49=0,两根为7;
当k=2时,最小值为2,方程为x2-2x+1=0,两根为1.
∴x1+x2=2(k-1),x1x2=2k2-12k+17,
∴x12+x22=(x1+x2)2-2x1x2
=4(k2-2k+1)-2(2k2-12k+17)
=-8k+4+24k-34
=16k-30,
∵△=4(k2-2k+1)-4(2k2-12k+17)
=-4k2+40k-64≥0,
解得:2≤k≤8,
∴当k=8时,最大值为98,方程为x2-14x+49=0,两根为7;
当k=2时,最小值为2,方程为x2-2x+1=0,两根为1.
点评:本题考查了根与系数的关系,属于基础题,关键是根据判别式△≥0求出k的取值范围.
练习册系列答案
相关题目