题目内容

【题目】如图,在中,已知边上一点,平分,分别交于点,连接.

1)若,求的度数;

2)若,求证.

【答案】170°;30°;(2)见解析

【解析】

1)根据等边对等角求出∠CAB和∠CBA的度数,再根据等边对等角求出∠BEC和∠BCE的度数,从而可得出∠ACE的度数,最后根据外角的性质可求出∠BEC的度数;再证明△BCF≌△BEF,从而得出∠BEF的度数,最后得出∠FEC的度数.

(2)先根据(1)中全等得出EF=CF,再由等角对等边判定△AEF为等腰三角形,得出AE=EF,从而得出结果.

证明:(1)∵

.

.

.

.

平分,∴∠CBF=EBF,

在△BCF和△BEF中,

∴△BCF≌△BEFSAS.

∴∠BEF=BCF=100°,.

∴∠FEC=BEF-BEC=30°.

2)由(1)可知

.

.

.

.

.

练习册系列答案
相关题目

【题目】如图直线yx+3与坐标轴分别交于AB两点抛物线yax2bx-3a经过点AB顶点为C连接CB并延长交x轴于点ED与点B关于抛物线的对称轴MN对称

(1)求抛物线的解析式及顶点C的坐标

(2)求证四边形ABCD是直角梯形

【答案】(1)y=-x2-2x+3,顶点C的坐标为(-1,4);(2)证明见解析.

【解析】

1)解:∵yx3与坐标轴分别交与AB两点,∴A点坐标(-30)、B点坐标(03.

抛物线yax2bx3a经过AB两点,

解得

抛物线解析式为:y=-x22x3.

∵y=-x22x3=-(x124

顶点C的坐标为(-14.

2)证明:∵BD关于MN对称,C(-14),B03),

∴D(-23.∵B03),A(-30),∴OAOB.

∠AOB90°∴∠ABO∠BAO45°.

∵BD关于MN对称,∴BD⊥MN.

∵MN⊥x轴,∴BD∥x.

∴∠DBA∠BAO45°.

∴∠DBO∠DBA∠ABO45°45°90°.

设直线BC的解析式为ykxb

B03),C(-14)代入得,

解得

∴y=-x3.

y0时,-x30x3∴E30.

∴OBOE,又∵∠BOE90°

∴∠OEB∠OBE∠BAO45°.

∴∠ABE180°∠BAE∠BEA90°.

∴∠ABC180°∠ABE90°.

∴∠CBD∠ABC∠ABD45°.

∵CM⊥BD∴∠MCB45°.

∵BD关于MN对称,

∴∠CDM∠CBD45°CD∥AB.

∵ADBC不平行,四边形ABCD是梯形.

∵∠ABC90°四边形ABCD是直角梯形.

型】解答
束】
21

【题目】有两组卡片第一组三张卡片上都写着ABB第二组五张卡片上都写着ABBDE.试用列表法求出从每组卡片中各抽取一张两张都是B的概率

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网