题目内容

(1)如图1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD=AB.
①求∠D的度数;
②求tan75°的值.
(2)如图2,点M的坐标为(2,0),直线MN与y轴的正半轴交于点N,∠OMN=75°.求直线MN的函数表达式.

解:(1)①∵BD=AB,
∴∠D=∠BAD,
∴∠ABC=D+∠BAD=2∠D=30°,
∴∠D=15°,
②∵∠C=90°,
∴∠CAD=90°-∠D=90°-15°=75°,
∵∠ABC=30°,AC=m,
∴BD=AB=2m,BC=m,
∴CD=CB+BD=(2+)m,
∴tan∠CAD=2+
∴tan75°=2+

(2)∵点M的坐标为(2,0),∠OMN=75°,∠MON=90°,
∴ON=OM•tan∠OMN=OM•tan75°=2×(2+)=4+2
∴点N的坐标为(0,4+2),
设直线MN的函数表达式为y=kx+b,

解得:
∴直线MN的函数表达式为y=(-2-)x+4+2
分析:(1)在直角三角形中利用角和边之间的关系求角的度数及边长即可;
(2)分别求得点M和N的坐标,利用待定系数法求函数的解析式即可.
点评:本题考查了解直角三角形及待定系数法求函数的解析式的知识,解题的关键是选择正确的边角关系解直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网