题目内容
【题目】如图,△ABC为等边三角形,D为边BA延长线上一点,连接CD,以CD为一边作等边三角形CDE,连接AE.
(1)求证:△CBD≌△CAE.
(2)判断AE与BC的位置关系,并说明理由.
【答案】(1)证明见试题解析;(2)AE∥BC,理由见试题解析.
【解析】试题(1)根据等边三角形各内角为60°和各边长相等的性质可证∠ECA=∠DCB,AC=BC,EC=DC,即可证明△ECA≌△DCB;
(2)根据△ECA≌△DCB可得∠EAC=60°,根据内错角相等,平行线平行即可解题.
证明:(1)∵△ABC、△DCE为等边三角形,
∴AC=BC,EC=DC,∠ACB=∠ECD=∠DBC=60°,
∵∠ACD+∠ACB=∠DCB,∠ECD+∠ACD=∠ECA,
∴∠ECA=∠DCB,
在△ECA和△DCB中,
,
∴△ECA≌△DCB(SAS);
(2)∵△ECA≌△DCB,
∴∠EAC=∠DBC=60°,
又∵∠ACB=∠DBC=60°,
∴∠EAC=∠ACB=60°,
∴AE∥BC.
练习册系列答案
相关题目