题目内容

【题目】如图,点AB是数轴上的两个点,它们分别表示的数是1 A与点B之间的距离表示为AB

1AB=

2)点P是数轴上A点右侧的一个动点,它表示的数是,满足,求的值.

3)点C6 若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:的值是否随着运动时间t(秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.

【答案】(1)3.(2)存在.x的值为3.(3)不变,为2.

【解析】

(1)根据非负数的性质和数轴上两点间距离即可求解;

(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;

(3)先确定运动t秒后,A、B、C三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.

解:(1)∵点A、B是数轴上的两个点,它们分别表示的数是和1
∴A,B两点之间的距离是1-(-2)=3.
故答案为3.

(2)存在.理由如下:
①若P点在A、B之间,
x+2+1-x=7,此方程不成立;
②若P点在B点右侧,
x+2+x-1=7,解得x=3.
答:存在.x的值为3.

(3)的值不随运动时间t(秒)的变化而改变,为定值,是2.理由如下:

运动t秒后,A点表示的数为-2-t,B点表示的数为1+2t,C点表示的数为6+5t.

所以AB=1+2t-(-2-t)=3+3t.

BC=6+5t-(1+2t)=5+3t.

所以BC-AB=5+3t-3-3t=2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网