题目内容
【题目】如图:已知AB∥CD,EF⊥AB于点O,∠FGC=131°,求∠EFG的度数. 下面提供三种思路:
(1)过点F作FH∥AB;
(2)延长EF交CD于M;
(3)延长GF交AB于K.
请你利用三个思路中的两个思路,将图形补充完整,求∠EFG的度数.
解(一):
解(二):
【答案】
(1)
(2)
(3)解(一):利用思路(1)过点F 作FH∥AB,如图1所示.
∵EF⊥AB,
∴∠BOF=90°.
∵FH∥AB,AB∥CD,
∴FH∥CD.
∵∠FGC+∠GFH=180°,∠FGC=131°,
∴∠GFH=49°,
∴∠GFO=∠GFH+∠HFO=49°+90°=139°.
解(二):利用思路(2)延长EF交CD于M,如图2所示.
∵EF⊥AB,
∴∠BOF=90°.
∵AB∥CD,
∴∠GMF=∠BOF=90°.
∵∠FGC=131°,
∴∠FGM=49°.
∵∠FGM+∠GMF+∠MFG=180°,
∴49°+90°+∠MFG=180°,
∴∠MFG=41°,
∴∠GFO=180°﹣∠MFG=139°.
解(三):利用思路(3)延长GF交AB于K,如图3所示.
∵EF⊥AB,
∴∠KOF=90°.
∵CD∥AB,
∴∠FKO+∠FGC=180°.
∵∠FGC=131°,
∴∠FKO=49°.
∵∠FKO+∠KOF+∠OFK=180°,
∴49°+90°+∠OFK=180°,
∴∠OFK=41°,
∴∠GFO=180°﹣∠OFK=139°.
【解析】(1)由EF⊥AB可得出∠BOF=90°,根据“平行于同一条直线的两直线互相平行”可得出FH∥CD,由“两直线平行,同旁内角互补”可得出∠GFH=49°,进而即可求出∠EFG的度数;(2)由EF⊥AB可得出∠BOF=90°,由“两直线平行,内错角相等”可得出∠GMF=∠BOF=90°,利用邻补角互补可求出∠FGM=49°,再根据三角形内角和定理可求出∠MFG=41°,结合邻补角互补可求出∠EFG的度数;(3)由EF⊥AB可得出∠KOF=90°,由“两直线平行,同旁内角互补”可得出∠FKO=49°,利用三角形内角和定理可得出∠OFK=41°,再利用邻补角互补可求出∠EFG的度数.
【题目】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:
(1)请填写下表:
平均数 | 方差 | 中位数 | 命中9环及以上的次数 | |
甲 | 7 | 1.2 | 1 | |
乙 | 5.4 |
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看;
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);
④从折线图上两人射击命中环数的走势看(分析谁更有潜力).