题目内容
【题目】如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点,点E坐标为(3,0),点C(5,0).
(1)如图①,求BD的长;
(2)如图②,设BD交x轴于F点,求证:∠OFA=∠DFA.
【答案】(1)BD=5;(2)证明见解析.
【解析】
(1)先由等边三角形的性质得出OA=AB,AC=AD,∠OAB=∠CAD=60°进而得出∠OAC=∠BAD,即可判断出△AOC≌△ABD即可得出结论;
(2)借助(1)得出的△AOC≌△ABD,得出∠ABD=∠AOC=30°,进而求出∠BFO=60°,再判断出,△AOF≌△BOF即可求出∠OFA=∠DFA=60°.
(1)∵点C(5,0).
∴OC=5,
∵△AOB和△ACD是等边三角形,
∴OA=AB,AC=AD,∠OAB=∠CAD=60°,
∴∠OAC=∠BAD,
在△AOC和△ABD中,
,
∴△AOC≌△ABD,
∴BD=OC=5;
(2)∵△AOB是等边三角形,且AB⊥x轴于E点,
∴∠AOE=∠BOE=30°,
由(1)知,△AOC≌△ABD,
∴∠ABD=∠AOC=30°,
∴∠BFO=90°-∠ABD=60°,
在△AOF和△BOF中,
,
∴△AOF≌△BOF,
∴∠AFO=∠BFO=60°,
根据平角的定义得,∠DFA=180°-∠AFO-∠BFO=60°,
∴∠OFA=∠DFA.
【题目】2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计,请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:
频率分布表
分数段 | 频数 | 频率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.5 |
90.5~100.5 | 24 | n |
(1)这次抽取了 名学生的竞赛成绩进行统计,其中:m= ,n ;
(2)补全频数分布直方图;
(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?