题目内容
【题目】如图,等腰的顶角的度数是,点是腰的黄金分割点,将绕着点按照顺时针方向旋转一个角度后点落在点处,联结,当时,这个旋转角是________度.
【答案】或
【解析】
先证出点D是腰AB的黄金分割点时,CD是∠ACB的平分线,当AE∥CD时,分两种情况,利用图形解出旋转角为72°或108°.
假设CD为∠ACB的平分线,
∵∠A=36°,
∴∠B=∠ACB=72°,
∴∠ACD=∠DCB=36°,
∴BC=DC=AD,
∴△CDB∽△ABC,
∴,
∴AD:AB=DB:AD,
点D是腰AB的黄金分割点,
∴CD是∠ACB的平分线,
(1)如图1,
∵AE∥CD时,
∴∠EAC=∠ACD=36°,
∴EC∥AD,
∵AD=CD
∴四边形ADCE是菱形.
∴此时这个旋转角72°;
(2)如图2,
∵AE∥CD时,
∴∠EAC=∠ACD=36°,
∴B′C∥AD,
∵AD=CD
∴四边形ADCB′是菱形.
∴∠B′CD=72°,
∴∠EB′C=72°,∠B′EC=72°,
∴此时这个旋转角36°+36°+36°=108°,
故答案为:72或108.
【题目】学校在八年级新生中举行了全员参加的数学应用能力大赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理数据:
人数 班级 | 60分人数 | 70分人数 | 80分人数 | 90分人数 | 100分人数 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
平均数 | 中位数 | 众数 | |
83 | 80 | 80 | |
2班 | 83 | ||
3班 | 80 | 80 |
分析数据:
根据以上信息回答下列问题:
(1)请直接写出表格中,,,的值;
(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由(写两条支持你结论的理由).