题目内容
【题目】规定:[m]为不大于m的最大整数;
(1)填空:[3.2]= ,[﹣4.8]= ;
(2)已知:动点C在数轴上表示数a,且﹣2≤[a]≤4,则a的取值范围 ;
(3)如图:OB=1,AB⊥OB,且AB=10,动点D在数轴上表示的数为t,设AD﹣BD=n,且6≤[n]≤7,求t的取值范围.
【答案】(1)3,-5;(2)﹣2≤a<5;(3)﹣≤t<﹣
或
<t≤
.
【解析】
(1)根据[m]为不大于m的最大整数数即可求解;
(2)根据[m]为不大于m的最大整数,可得﹣2≤a<5即可求解;
(3)分两种情形:当点D在点B的右边时,当点D在点B的左边时分别求解即可.
解:(1)[3.2]=3,[﹣4.8]=﹣5.
故答案为3,﹣5.
(2)∵﹣2≤[a]≤4
∴﹣2≤a<5.
(3)如图,当点D在点B的右边时,
∵6≤[n]≤7,
∴6≤n<8,
当n=8时,﹣(t﹣1)=8,
解得t=,
当n=6时,﹣(t﹣1)=8,
解得t=,
观察图象可知,<t≤
.
当点D在点B的左边时,同法可得﹣≤t<﹣
,
综上所述,满足条件的t的值为﹣≤t<﹣
或
<t≤
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】(本题10分)某自行车厂一周计划生产700辆自行车,平均每天生产自行车100辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入。下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | +8 | -2 | -3 | +16 | -9 | +10 | -11 |
(1)根据记录可知前三天共生产自行车 辆;
(2)产量最多的一天比产量最少的一天生产 辆;
(3)若该厂实行按生产的自行车数量的多少计工资,即计件工资制。如果每生产一辆自行车就可以得人民币60 元,超额完多成任务,每超一辆可多得 15 元;若不足计划数的,每少生产一辆扣 15 元,那么该厂工人这一周的工资总额是多少?