题目内容
【题目】(14分)盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用(元)及节假日门票费用(元)与游客x(人)之间的函数关系如图所示.
(1)a= ,b= ;
(2)直接写出、与x之间的函数关系式;
(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?
【答案】(1)6,8;(2),=;(3)A团有20人,B团有30人.
【解析】
试题(1)由函数图象,用购票款数除以定价的款数,得出a的值;用第11人到20人的购票款数除以定价的款数,得出b的值;
(2)利用待定系数法求正比例函数解析式求出,分x≤10与x>10,利用待定系数法求一次函数解析式求出与x的函数关系式即可;
(3)设A团有n人,表示出B团的人数为(50﹣n),然后分0≤n≤10与n>10两种情况,根据(2)的函数关系式列出方程求解即可.
试题解析:(1)由图象上点(10,480),得到10人的费用为480元,∴a=×10=6;
由y2图象上点(10,800)和(20,1440),得到20人中后10人费用为640元,∴b=×10=8;
(2)设,∵函数图象经过点(0,0)和(10,480),∴,∴=48,∴;
0≤x≤10时,设,∵函数图象经过点(0,0)和(10,800),∴,∴=80,∴,x>10时,设,∵函数图象经过点(10,800)和(20,1440),∴,∴,∴;
∴=;
(3)设A团有n人,则B团的人数为(50﹣n),当0≤n≤10时,48n+80(50﹣n)=3040,解得n=30(不符合题意舍去),当n>10时,48n+64(50﹣n)+160=3040,解得n=20,则50﹣n=50﹣20=30.
答:A团有20人,B团有30人.
考点:1.一次函数的应用;2.分段函数;3.分类讨论;4.综合题.
【题型】解答题
【结束】
23
【题目】在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是A、B,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.
请判断下列各点中是平面直角坐标系中的平衡点的是______;填序号
,.
若在第一象限中有一个平衡点恰好在一次函数为常数的图象上.
求m、b的值;
一次函数为常数与y轴交于点C,问:在这函数图象上,是否存在点使,若存在,请直接写出点M的坐标;若不存在,请说明理由.
经过点,且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.
【答案】(1)②;(2)①,,②存在,M的坐标为或;(3)没有,见解析.
【解析】
根据平衡点的定义,逐一验证A,B两点是否为平衡点,此题得解;
由平衡点的定义,可得出关于m的一元一次方程,解之可求出m的值,再利用一次函数图象上点的坐标特征可求出b值;
存在,设设点M的坐标为,利用三角形的面积公式结合,可得出关于x的含绝对值符号的一元一次方程,解之即可得出x的值,再将其代入点M的坐标中即可求出结论;
没有,设平衡点的坐标为,利用平衡点的定义可得出,即,由,可得出:经过点,且平行于x轴的直线上没有平衡点.
解:,
不是平衡点;
,
是平衡点.
故答案为:.
点为平衡点,且在第一象限,
,
解得:,
点N的坐标为.
点在一次函数为常数的图象上,
,
解得:.
,.
存在,设点M的坐标为.
,即,
解得:,
点M的坐标为或.
没有,理由如下:
设平衡点的坐标为,
则,
,即.
,
经过点,且平行于x轴的直线上没有平衡点.